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Abstract

The formations of Factor Xa and thrombin, two intermediate chemicals leading to the formation of blood clots in
damaged blood vessels are predicted in this paper using a finite-volume method. The steady-state forms of the conti-
nuity, momentum and concentration equations are solved. The surface reactions are modeled using the classical
Michaelis—Menten reaction kinetics. The results are compared with three sets of experimental data. These experiments
were conducted using circular tubes and parallel flat plates. The present computational model is able to predict ex-
perimental results very well over a range of shear rates and inlet concentrations. © 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The aggregation of platelets in damaged blood ves-
sels forms blood clots. This leads to the formation of
insoluble fibrin network, which further traps blood cells.
Fibrin is the product of a complex chain of reactions,
which involves both enzymes and nonenzymatic cofac-
tors [1]. Two of these reactions are the formation of
Factor Xa from Factor X and the formation of throm-
bin from prothrombin.

Experimental results on the formation of thrombin
were reported by Billy et al. [2]. The average thrombin
flux was presented for two shear rates and various inlet
prothrombin concentrations. Two different tube diam-
eters were used in the above experiments. Gemmell et al.
[3] and Hall et al. [4] reported experimental data on the
formation of Factor Xa. Numerical simulations of the
above experiments were conducted by Gir et al. [5] and
Hall et al. [6]. Gemmell et al.’s experiments were carried
out using circular tubes, while Hall et al., measured the
formation of Factor Xa using two parallel plates. In the
numerical studies conducted in [5,6], the -classical
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Michaelis-Menten reaction kinetics were used to model
the surface reactions. Hall et al. [6] used a commercial
software package to model the experiments.

The objective of this paper is to present a numerical
study on the prediction of the formations of thrombin
and Factor Xa using a finite-volume method [7]. The
surface reactions are modeled using the Michaelis—
Menten reaction kinetics.

The remainder of this paper is divided into three
sections. The governing equations, boundary conditions,
average flux and numerical procedure employed are
discussed in the next section. This is followed by the
presentation of the results and the associated discussion
for three experiments. Finally, some concluding remarks
are given to conclude the paper.

2. Governing equations and boundary conditions
2.1. Governing equations

The continuity, momentum and concentration
equations can be written as
Continuity

o(pu) 1 d(pr'v)
Ox re or

=0. (1)
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Nomenclature

a coordinate indicator

¢ concentration of prothrombin or Factor X

Cin inlet concentration of prothrombin or Fac-
tor X

C dimensionless concentration of prothrom-

bin or Factor X

D depth of the channel

D, diffusion coefficient of prothrombin or
Factor X

H height of channel

km Michaelis constant

K. dimensionless k,

[, length scale in the transverse direction

p pressure

P dimensionless pressure

Pe Peclet number

Re Reynolds number

q. boundary prothrombin or Factor X flux

(0] volumetric flow rate

0. dimensionless g,

70 radius of the tube

u,v dimensional axial and transverse velocities
Umax maximum axial velocity

u,v dimensionless axial and transverse velocities
Uin inlet axial velocity

Winax maximal conversion rate per unit area

Wenax dimensionless Wax

X, V,r coordinates
X,Y,R dimensionless coordinates

Greek symbols

Y shear rate
o density

u viscosity
Subscripts

ave average
in inlet

max maximum

Axial momentum

Quy O Gu) L[ LGN
Pl Py T\ T\ e ) T

Transverse momentum

o, o o 10/ @
pu@x pvariax ”6}6 e Or # or

op uv
Concentration
Oc Ooc 0 Oc 10 ,Oc
YT a‘(’*&)*ﬁ&(l) ar) )

In Egs. (1)~(4), x and r are the axial and the transverse
coordinates, respectively. The symbol « is set to zero for
Cartesian coordinates and one for axisymmetric com-
putations. The above equations can be non-dimension-
alized as

Continuity
oU 1 d(RV)
R ®)

Axial momentum

U, ,0U_1 2 (auy 1L
oX OR  Re dX \ 0X Re R¢

0 [ U\ oP

U

Transverse momentum

U@V+ or 1
oX oR ReaX ReR“
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Concentration
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using the following dimensionless variables:

oc aC 1 9 [aCc\ 1 1
U—+V—_——(a—x)+——

X:ny, R:E, (9a)
v=—, ==, (9b)
P:p%q, c:é, (9¢)
Re:'(miT“Zy7 Pe:uiDL{y. (9d)

The characteristic lengths /, are the radius of the tube 7,
and the height of the channel H for the axisymmetric
and the parallel plate geometries respectively. The
meanings of various variables used in Egs. (9a)—(9d) are
defined in the nomenclature. All properties are assumed
constant in this paper. From Eqgs. (5)—(8), it is clear that
the solutions depends on the Reynolds number Re, and
the Peclet number Pe. The boundary conditions for the
two geometries are presented next.
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2.2. Boundary conditions

Fig. 1 shows the schematics of the computational
domains. The following are used as the boundary con-
ditions in this paper:

Axisymmetric flow
Inlet (x = 0) u=up, v=0 c=cp, (10a)
ov oc
Outlet (x = Xmax —=0, —=0, 10b
utlet (X = Xpax) - - (10b)
Ou dc
Bottom (» = 0) P 0, v=0, P 0, (10c)
Top (r =ro) u=0, v=0,
B c (10d)
qc‘ - Wmax c + km N
Parallel plate flow
Inlet (x = 0) U=y, v=0, c=cip, (I1a)
ov dc
Outlet (X = xmax) a = O7 a = 0, (1 lb)
dc
Bottom (y = 0) u=0, v=0, a—y:O7 (11¢)

Top (y=H) u=0, v=0,
c (11d)
c+ky

de = —Wmax

The axial velocities at the exits (x = xp.x) are calculated
to ensure mass conservation. The dimensionless forms of
the boundary conditions are:

r A Top Wall
Outlet

Uin

)
. - — —t—3

Symmetry /

x
()

y 4 Top Wall

¥ Outlet

Uin
‘Rl H
>
Bottom Wall / X
(b)

Fig. 1. Schematics of experiments: (a) axisymmetric, (b) par-
allel plates.

Axisymmetric flow
Inlet (X =0) u=1, r=0, C=1, (12a)
or oC
Outlet (X = Xp)  5o=0, 0=0, (12b)
oU oC
Bottom (R = 0) a—R—O7 V=0, a—R—O
(12¢)

Top R=1) Uu=0, V=0,

c (12d)

= —Whax 5———-
O C+Kn
Parallel plate flow
Inlet (X =0) u=1, V=0, C=1, (13a)
or oC
Outlet (X = Xmax) ﬁ = O7 & = 07 (13b)
oC

Bottom (Y =0) u=0, V=0, a—y:O, (13¢)
Top (Y =1) U=0, V=0,

C (13d)

- = 7VVmax - r
O CiK.

The axial velocities at the exits (X = Xmax) are calculated
to ensure mass conservation. Most dimensionless vari-
ables are defined in Egs. (9a)-(9d). Additional dimen-
sionless variables used in the above equations are

km _ Wmaxly _ Zch

Km:_7 Wm‘x_ ) c— N . - 14
Cin * Dscin Dscin ( )

2.3. Developing and fully developed velocity fields

When the flow is assumed to be fully developed, the
solutions of the continuity, axial momentum and
transverse momentum equations yield the following re-
lations:

Axisymmetric flow
A\ 2

u—ZMm[l— (—) }, (15a)
ro

Umax = 2Uin, (15b)

40

== 15

/ nry (15¢)

Parallel plate flow

—eu |2 (Y
u—6um[H (H> } (16a)
Umax = %uina (16b)
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Y
The concentration (Eq. (4) or Eq. (8)) is solved using the
fully developed velocity profiles given in Eq. (15a) or
(16a). When fully developed flow is assumed, the solu-
tion of the concentration equation requires the specifi-
cations of uj,, Ds, kyn and wiax.

When the velocity boundary layer is allowed to de-
velop, the continuity, axial momentum and transverse
momentum equations (Egs. (1)-(3) or Egs. (5)-(7)) are
solved to obtain the velocity distributions inside the
solution domains. Once the velocity distribution is ob-
tained, the concentration equation (Eq. (4) or Eq. (8)) is
solved to obtain the concentration profile.

2.4. Average flux

Once the concentration distribution is obtained, the
average flux is calculated using the following relation:

Jo™ gely, d

Qave = —_ - (17)

xmax

The equation is valid for both axisymmetric and parallel
plate geometries using the /, appropriate to the specific
geometry.

2.5. Numerical procedure

When the flow is allowed to develop, the continuity
and the momentum equations given in Egs. (1)-(3) or
Egs. (5)—(7) are solved. The concentration given by Eq.
(4) or Eq. (8) is then solved to obtain thrombin flux or
Factor Xa flux. When flow field is assumed to be fully
developed, the velocity profiles given by Eq. (15a) or Eq.
(16a) are specified and the concentration given by Eq.
(4) or Eq. (8) is then solved to obtain thrombin flux or
Factor Xa flux. In both cases, the velocity field is de-
coupled from the concentration field. The governing
equations for mass, momentum and concentration are
solved using the finite-volume approach described by
Patankar [7]. When needed, the SIMPLER algorithm of
Patankar [7] is used to resolve the pressure—velocity
coupling. A block-correction procedure is used to en-
hance convergence.

3. Results and discussions

Three different sets of results are presented in this
section. The results are compared with available exper-
imental data reported by Billy et al. [2], Gemmell et al.
[3] and Hall et al. [4]. These results show that the present
computational model produces accurate solutions for
the production of Factor Xa from Factor X and the
production of thrombin from prothrombin using the
Michaelis—Menten kinetics. The first two problems
consist of flow inside axisymmetric tubes, while the third
problem is for flow between two parallel plates.

3.1. Problem 1

3.1.1. Problem description

The experiment was presented by Billy et al. [2]. It
consists of flow inside a circular tube. Four different sets
of experiments were carried out using two different
volumetric flow rates and two tube radii. Since exper-
imental values are presented for two sets of experiments,
these cases are simulated and presented. The length of
the tube was kept at 12.7 cm for all cases. The important
parameters are summarized in Table 1. As discussed
earlier, both the density p, and viscosity u, are needed in
the solution of the momentum and continuity equations
when the flow is allowed to develop. These values are
taken as p = 1.028 g/cm’ and u = 0.012 g/(s cm), re-
spectively. The diffusion coefficient of prothrombin is
D, =1 x 107° ¢cm?/s. The Reynolds and Peclet numbers
are defined in Eq. (9d). The schematic of the problem is
shown in Fig. 1(a).

3.1.2. Discussions of results

The effects of spatial grid resolutions are examined.
Fig. 2 shows the average thrombin production rate
calculated from Eq. (17) using values of parameters
shown in case 2 with two spatial grids. First, the com-
putation is carried out using a “coarse” grid of 40 x 200
control volumes in the radial and axial directions, re-
spectively. The number of control volumes in each di-
rection are then increased to 80 x 400 control volumes.
The predicted thrombin production rate (Fig. 2) shows
that the solution does not change with spatial grid
(identical) or the grid independent solution has been
obtained. As a result, the coarser grids of 40 x 200

Table 1
Flow parameters for Billy et al.’s experiments
Case ry (cm) O (Wl/min) Re Pe Kinetic parameters
Apparent Intrinsic
km (nM) Wmax [fmole/(s cm?)] ke (nM) Winax [fmole/(s cm?)]
1 0.0325 30 0.42 48978 6.6 0.805 1.3 0.7224
2 0.0145 440 13.79 160950 3.9 1.215 2.8 1.197
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Fig. 2. Effect of spatial grids on the average thrombin flux.
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Fig. 3. Effect of developing and fully developed flow fields on
the average thrombin flux.

control volumes are used in all subsequence computa-
tions. The flow field is allowed to develop in this spatial
grid study. It will be shown (see Fig. 3) that the flow field
can be assumed to be fully developed without affecting
the present conclusion.

Fig. 3 shows the comparison between fully developed
and developing flow fields for case 2. Similar to the grid
sensitivity study, the predicted average thrombin pro-
ductions are identical. Although not shown, both the
spatial grid resolution and velocity field studies on the
low volumetric flow rate case (case 1) show the same
conclusion. As a result, all subsequent computations are
carried out using 40 x 200 control volumes and fully
developed velocity field.

Fig. 4 shows the comparisons between the computed
and experimental results for both flow rates. Both
apparent and intrinsic kinetic parameters produce
reasonable solutions compared to the experimental data.
At lower flow rates, solutions obtained using the in-
trinsic parameters match the published experimental
results better. At higher flow rates, both apparent and
intrinsic parameters produce similar results. The present
numerical results are tabulated in Table 2.

3.2. Problem 2

3.2.1. Problem description
The experiment was presented by Gemmell et al. [3].
Similar to the previous problem, it consists of flow inside

12
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Fig. 4. Comparisons of thrombin production rate obtained
from numerical computations and experimental data for two
volumetric flow rates: (a) 30 ul/min, (b) 440 pl/min.

a circular tube. The length of the tube was kept at 12.8
cm for all cases. The tube radius was 0.0135 cm. The
important parameters are summarized in Table 3. The
ratio between the density and viscosity is p/u=
265.2 s/em’. The diffusion coefficient of Factor X is
Dy = 5.0 x 1077 cm?/s. The schematic of the problem is
shown in Fig. 1(a).

3.2.2. Discussions of results

The effects of spatial grids and developing velocity
field are examined. It was observed that the fully de-
veloped velocity profile could be used without changing
the solutions. Similarly, grid independent solutions have
been obtained using 40 x 200 control volumes in the
radial and axial directions, respectively. As a result, the
computational grids used in the previous study are also
employed here. Fig. 5 shows the comparisons between
the computed results and the available experimental
data for different shear rates and inlet Factor X con-
centrations. It can be seen that the computational results
match the experimental data quite well.

3.3. Problem 3

3.3.1. Problem description

Hall et al. [4,6] conducted experimental measure-
ments and numerical simulations of the production of
Factor Xa in parallel channel. Transient production of
Factor Xa are presented for six shear rates, namely, 10,
20, 40, 80, 320, and 1280 s~!. The steady-state Factor
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Table 2
Predicted thrombin flux

Ci» (1M)  Thrombin flux [fmole/(s cm?)]

30 pl/min 440 pl/min
Apparent  Intrinsic Apparent  Intrinsic
1 0.05 0.060 0.17 0.20
2 0.09 0.13 0.31 0.37
3 0.13 0.19 0.43 0.49
4 0.17 0.24 0.52 0.60
5 0.21 0.30 0.60 0.67
6 0.24 0.35 0.66 0.74
7 0.27 0.39 0.71 0.79
8 0.30 0.44 0.76 0.83
9 0.33 0.47 0.79 0.86
10 0.36 0.51 0.83 0.89
11 0.38 0.53 0.85 0.92
12 0.41 0.56 0.88 0.94
13 0.43 0.58 0.90 0.95
14 0.45 0.59 0.92 0.97
15 0.46 0.61 0.94 0.98
16 0.48 0.62 0.95 1.00
17 0.50 0.63 0.96 1.01
18 0.51 0.64 0.98 1.02
19 0.52 0.64 0.99 1.03
20 0.53 0.65 1.00 1.04
22 0.56 0.66 1.02 1.05
25 0.58 0.67 1.04 1.07
27 0.60 0.68 1.05 1.08
30 0.62 0.68 1.07 1.09
35 0.65 0.69 1.09 1.10
40 0.67 0.69 1.10 1.11
45 0.68 0.70 1.10 1.12
50 0.69 0.70 1.12 1.13
55 0.70 0.70 1.13 1.14
60 0.71 0.70 1.14 1.14
65 0.72 0.71 1.14 1.15
70 0.73 0.71 1.15 1.15
75 0.73 0.71 1.15 1.15
80 0.74 0.71 1.16 1.16
Table 3
Flow parameters for Gir et al.’s experiments
y Uin Re Pe km Winax
(1/s)  (cm/s) (nM)  [fmole/(s cm?)]
100 0.338 1.208 9040.2 140 42.133
300 1.013 3.625  27120.5 89.6 48.617
600 2.025 7.250 54241.1 107.8 55.1
1200 4.05 14.500 108482.1 924 52.783
1800 6.075  21.750 162723.2 39.2 493
2400 8.1 29.000 2169643 154 48.617

Xa fluxes are predicted for selected shear rates. The
length of the channel was kept at 4.5 cm for all cases.
The height of the channel was 0.01 cm. The important
parameters are summarized in Table 4. The ratio be-
tween the density and viscosity is p/u = 1000 s/cmz.

3
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Fig. 5. Comparisons of Factor Xa production rate obtained
from numerical computations and experimental data for five
volumetric flow rates.

The diffusion coefficient of Factor X is D, = 5.0 x
10~7 cm?/s. The inlet concentration of Factor X was set

to 100 nM. The schematic of the problem is shown in
Fig. 1(b).
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Table 4
Flow parameters for Hall et al.’s experiments

y (1/s) u;, (cm/s) Re Pe km (nM) Wimnax* [fmole/(min sz)]
10 0.0167 0.167 333.333 36
20 0.0333 0.333 666.667 36 124
80 0.1333 1.333 2666.67 36 200
320 0.5333 5.333 10666.7 36
1280 2.1333 21.333 42666.7 36 792
“Ref. [6].
Table 5
Comparison of present predictions with Hall et al.’s data
y (1/s) Wi [fmole/(min cm?)] Hall et al. Present numerical [fmole/(min cm?)]
Experiment Numerical
[fmole/(min cm?)] [fmole/(min cm?)]
20 124 95420 86 85.5
80 200 138+33 139 139
1280 792 593434 533 532.6
Table 6

Comparison of present predictions with Hall et al.’s data

y (1/s) Wanax [fmole/(min cm?)] Experiment [fmole/(min cm?)] Numerical [fmole/(min cm?)]
10 100 69+ 18 67.7
20 140 95+20 95.6
80 200 138 £33 139
320 475 317144 320.6
1280 900 593434 596.4

3.3.2. Discussions of results

The effects of spatial grids and developing velocity
field are also examined. Similar to the previous problems,
it was observed that the fully developed velocity profile
could be used without changing the solutions. Similarly,
grid independent solutions have been obtained using
40 x 200 control volumes in the transverse and axial
directions, respectively. This indicates that the solution
procedure is quite robust. The value of &, is set to 36 nM
in all computations. Table 5 shows the comparisons be-
tween the present predictions with the experimental data
and numerical solutions of Hall et al. The wy,, values
suggested by Hall et al. are used in these comparisons. It
can be seen that the present predictions match the pre-
dictions of Hall et al. very well. The values of wy,.,x are
“optimized” and the results are shown in Table 6. Each
shear rate simulation requires about five seconds of CPU
time on a Pentium III 700 MHz personal computer.

4. Concluding remarks

A finite-volume method is used to model the forma-
tion of Factor Xa from Factor X, and the formation of

thrombin from prothrombin. It is found that the average
production rate is the same for both the fully developed
flow and developing flow. Three sets of experiments are
simulated and the results match the experimental data
very well. Therefore, the classical Michaelis—Menten
enzyme Kinetics can be used to describe two important
steps in the blood coagulation cascade once steady state
has been reached. To show the robustness of the pro-
cedure, the same computational grid is used in all three
simulations.
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